Human Gene Prevents Regeneration in Zebrafish
UCSF News reports on new research of the Pomerantz Lab suggesting that future efforts to regrow or regenerate human tissue may require blocking the activity of a tumor-suppressor gene, ARF. The research involved adding the human ARF gene to a zebrafish, which prevented its normal ability to regenerate tissue, here the fish's tail fin that had been cut off.
The research was led by Jason Pomerantz, MD, Associate Professor of Surgery in the Division of Plastic and Reconstructive Surgery, Surgical Director of the UCSF Craniofacial Center, and Director of the Pomerantz Lab. The lead author on the paper was Robert Hesse, B.S., a researcher in the lab.
Regenerative medicine could one day allow physicians to correct congenital deformities, regrow damaged fingers, or even mend a broken heart. But to do it, they will have to reckon with the body’s own anti-cancer security system. Now UCSF researchers have found a human gene that may be a key mediator of this tradeoff, blocking both tumors and healthy regeneration.
As a child, UCSF’s Jason Pomerantz, MD, was amazed by the fact that salamanders can regenerate limbs. Now, as a plastic surgeon and stem cell researcher, he believes that insights from creatures like zebrafish and salamanders, which routinely regrow damaged tails, limbs, jaws and even hearts, may one day endow humans with heightened regenerative abilities.
“In the last 10 to 15 years, as regenerative organisms like zebrafish have become genetically tractable to study in the lab, I became convinced that these animals might be able to teach us what is possible for human regeneration,” Pomerantz said. “Why can these vertebrates regenerate highly complex structures, while we can’t?”
In a study published Nov. 17, 2015, in the journal eLife, Pomerantz and his team showed new evidence suggesting that mammals may have given up the ability to regenerate limbs partly in exchange for advanced cancer-fighting genes.....
The question of whether the regenerative powers of zebrafish and salamanders represent ancient abilities that mammals have lost, perhaps in exchange for advanced tumor-suppression systems remains an open question for biologists. Most tumor suppressor genes, being extremely useful for preventing cancer and for forming tissues during development, are broadly distributed and conserved across many different species. Recent studies, however, suggest that one, the Arf gene, arose more recently in the avian and mammalian lineage, and has no equivalent in the genomes of highly regenerative animals.
To explore whether this gene might play a role in preventing tissue regeneration in humans, the researchers added human ARF to the zebrafish genome and assessed how it affected the fishes’ normal ability to regrow damaged fins after injury. They found that human ARF had no effect on the fishes’ normal development or response to superficial injury, but when the researchers trimmed off the tip of a fish’s tail fin, the gene became strongly activated and almost completely prevented fin regrowth by activating a conserved tumor-blocking pathway.
“It’s like the gene is mistaking the regenerating fin cells for aspiring cancer cells,” said Pomerantz, who is an associate professor of plastic and reconstructive surgery at UCSF and surgical director of the Craniofacial Center at UCSF’s Medical Center and School of Dentistry. “And so it springs into action to block it.”
It’s remarkable that ARF can so readily integrate itself into the fish’s existing tumor-blocking pathways, Pomerantz said. “Humanizing a lower vertebrate species to study regeneration has not generally been used before, and to our surprise it turned out to be remarkably tractable. The gene fits right in very cleanly and completely alters the organism's response.”
Read full news article at UCSF News
"The human ARF tumor suppressor senses blastema activity and suppresses epimorphic tissue regeneration" Robert G Hesse, Gayle K Kouklis, Nadav Ahituv, Jason H Pomerantz, University of California, San Francisco http://dx.doi.org/10.7554/eLife.07702